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Abstract. The problem of the stability of the numerical solution of the one-dimensional 
Schrodinger equation with symmetrical potential V ( x )  is considered. This problem is 
illustrated by the example y " + ( E - x 2 ) y = 0  with y ( O ) = l  and y ( x ) + O  when x+=,  for 
which the conventional shooting method using the Numerov integrator fails for E = - 1 ,  
to find y ( x )  beyond x = 5. I t  is shown that these values are reached by using a different 
procedure for shooting with the same Numerov integrator. This procedure starts the 
integration at any 'large' value L of x, and steps backward towards x = 0. The method is 
applied to another value of E for which an exact value of y ( x )  is available. This test shows 
that the accuracy of the computed values of y ( x )  is independent of the choice of L. Thus 
the present method does not improve the eigenvalue computation, but i t  allows the 
determination of the solution ~ ( x )  for large x when such values are needed. 

1. Introduction 

In seeking the numerical solution of the equation 
-D2y + X'Y = Ey 

with y(O)= 1 and  y ( x ) - * O  when x + m ,  many authors noticed a problem with the 
stability of y ( x )  for 'large' x. Among these we mention Holt (1964), Osborne (1969), 
Roberts and  Shipman (1971) and  Gupta and Agarwal(1989, who used simple shooting 
methods with E = -1 and  pointed out that these methods become unstable beyond 
x - 3.5. In a recent work, Killingbeck 1987 devised a new shooting method starting at 
x = 0 and reaching x - 5. In a more recent work, Kobeissi et a /  1989 showed that the 
'canonical functions method' allowed another slight improvement. Other authors 
considered related problems and tried to improve the stability of the solution y ( x )  at 
large x by replacing the conventional Numerov integrator, largely used in shooting 
methods, by higher-order difference equations (e.g. Hajj et a1 1974, Cash and Raptis 
1984, Fack and  Vanden Berghe 1985, 1986 and Killingbeck 1986). 

This particular problem may be inscribed in a more general one, that of the radial 
Schrodinger equation 

( 2 )  
where V is a n  even function of x ( V ( - x )  = V ( x ) ) ,  and the solution y ( x )  obeys the 
boundary conditions 

-D'y + V ( X ) ~  = Ey 

y(*cc) = 0. (3) 
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For this general problem, two needs may arise: ( i )  the ‘parameter’ E is given and 
the solution y ( x )  obeying the boundary condition (3) is to be found, (ii) E is not 
given, and  the eigenvalues E, for V ( x )  are to be found. For these two needs the 
stability of the numerical solution y ( x )  at large x plays an important role in the 
accuracy of the results. For this specific problem of stability, the example given in (1) 
is a good illustration. 

According to the canonical functions scheme (Kobeissi er al 1989), the eigenvalue 
problem may be reduced to that of the computation, for an  arbitrary E, of the logarithmic 
derivative G( E )  = y’( E ;  x ) / y (  E ;  X ) I , = ~ .  When E varies, the function G( E )  for V = x2 
(for example) has a shape similar to that of the function f ( E )  = t an(aE + b )  ( a  and b 
are given constants) with successive zeros and asymptotes. A zero of G( E )  corresponds 
to y ’ ( E ;  0) = 0, i.e. to an  even eigenvalue E,,,; an  asymptote of G ( E )  corresponds to 
y ( E ;  0) =0 ,  i.e. to an  odd  eigenvalue E,,,. In all cases, the whole problem is reduced 
to a single simple one: for a given E, find the solution y ( E ;  x)  of equation (2)  which 
obeys the boundary condition (3) and at  x = 0 has a given value of y ( E ;  0) (so y’( E ;  0) 
is to be found),  or a given value of y ’ ( E ;  0) (and y ( E ;  0) is to be found). The problem 
illustrated in (1) is a conventional example of each of these two alternatives. 

The present work aims to show that conventional and  simple numerical techniques 
are suitable to solve equation (1) with a high stability. This new procedure is outlined 
in section 2 and tested in section 3. 

2. The theory 

We formulate the basic problem as follows: find the solution y ( x )  of equation ( 2 )  
(where V is an  even function, E is given) obeying the boundary conditions 

a is given, L must be as large as possible. 
In order to solve this problem we replace equation ( 2 )  by a convenient difference 

equation, and  we use the initial values y ( 0 )  = a = 1 and  y ’ ( 0 )  = b, b is a trial parameter 
to be adjusted in order to satisfy the condition y ( L ) = O .  As we mentioned in the 
introduction, such a simple shooting method is unable to give an  accurate solution for 
a ‘large’ value of L. The reason of this failure is known: the slightest mismatch of the 
initial conditions would introduce into y ( x )  a growing exponential component which 
would become dominant at large x (Killingbeck 1987). 

This last remark used by Killingbeck to devise his new technique is what inspired 
our present work. We simply eliminate the ‘spurious’ component by starting the 
integration at x = L, instead of x = 0, and by shooting backwards towards x = 0, with 
the initial conditions y (  L )  = 0,  y’( L )  = b f 0, b being an arbitrary (small) constant. 

When one wishes to use the Numerov integrator, the distance L is divided into 
equally spaced points x,, with a constant step-length h. The initial conditions for y ( L )  
and y ’ ( L )  are replaced here by y ( L )  = O  and y ( L - h ) =  b;  the arbitrary constant b 
corresponds to an unnormalized solution y (  x) .  

We give in table 1 the solution y ( x )  of (1) with E = -1, computed by the present 
method and  compared with the solution found by Killingbeck (1987). We used the 
same Numerov integrator used by Killingbeck, with the same step-length h = 0.05. We 
give in column 3 the function y ( x )  computed with L = 10, and normalized to 1 at x = 0. 
We give in the last column y ( x )  for L =  15. All the computations are done on the 
computer HP9000/220 to 15 figures. 

Y ( 0 )  = a y ( L )  = 0 (4) 
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Table 1. Computed ralues of the solution ~ ( x )  of ( I )  with E = -1 at several values of x. 
The values obtained by the present method for L = 10 and L = 15 are compared with those 
obtained by Killingbeck (1987). In all cases the Numerov integrator is used with a 
step-length h = 0.05. (Numbers between parentheses are exponents.) 

Present work 

X Killingbeck L = l O  L = 1 5  

15 O$ 
14 1.088 249 (-44) 
13 8.592 491 (-39) 
12 2.505 953 (-33) 
11 2.703 355 (-28) 
10 O$ 1.080 744 (-23) 
9 1.603 927 (-19) 1.603 927 (-191 
8 8.858 874 (-16) 8.858 874 (-16) 
7 1.826 847 (-12) 1.826 847 (-12) 
6 1.412 885 (-9) 1.412 885 (-9) 
5 0: 4.125 496 (-7) 4.125 496 (-7) 
4 4.6 (-5) 4.595 804 (-5) 4.595 804 (-5) 
3 1.988 5 (-3) 1.988 523 (-3) 1.988 523 (-3) 
2 3.456 41 (-2) 3.456 405 (-2) 3.456 405 (-2) 
1 2.593 426 ( -1 )  2.593 425 ( -  1 )  2.593 425 (-1) 
0 1 19: 19: 

i- Rendered formally 0 by choice of weighting factors 
$ Rendered 0 by imposing boundary conditions. 
$ Rendered 1 by normalization. 

Table 2. Computed values of the solution y ( x )  of (2)  with V ( x ) = x 2 + x 2 / J l + x z )  and 
E = 1.232 351 at several values of x and for several values of L. The Numerov integrator 
is used with a step-length h = 0.05. (Numbers between parentheses are exponents.) 

X L = 7  L =  10 L =  15 

15 O i  
14 1.098 488 9 (-43) 
13 8.286 186 9 (-38) 
12 2.300 422 7 (-32) 
11 2.352 477 8 (-27) 
10 Ot 8.869 018 5 (-23) 
9 1.233 799 8 (-18) 1.233 799 8 (-18) 
8 6.339 7343 (-15) 6.339 7343 (-15) 
7 O+ 1.204 726 6 ( -1  1)  1.204 726 6 ( -1  1) 
6 8.479 944 6 (-9) 8.479 954 6 (-9) 8.479 954 6 (-9) 
5 2.215 8996  (-6) 2.215 8926  (-6) 2.215 892 6 (-6) 
4 2.156 525 0 (-4) 2.156 525 0 (-4) 2.156 525 0 (-4) 
3 7.853 347 5 (-3) 7.853 347 5 (-3) 7.853 347 5 (-3) 
2 1.076653 1 ( - 1 )  1.076653 1 ( - 1 )  1.076653 1 ( - 1 )  
1 5.549 501 1 ( - 1 )  5.549 501 1 ( - I )  5.549501 1 ( - 1 )  
0 1t 1$ 1% 

t Rendered formally 0 by imposing boundary conditions. 
$ Rendered 1 by normalization. 
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By comparing our results with those of Killingbeck, we notice the excellent agree- 
ment between them for O <  x < 5; x = 5 is the limit obtained by Killingbeck. Yet, for 
our results, we have apparently no such limit since the ‘limit’ L is chosen as large as 
one likes. In table 1 two examples are given for L = 10 and  L = 15, but we obtained 
similar results for L = 20 and  L = 25. 

This excellent stability of y ( x )  at large x is not altered by any ‘side-effect’. To verify 
this we considered the logarithmic derivative G = y ‘ (O) /y (O)  and we studied the 
variation of G with L. We noticed that G( L )  takes, successively, the following values: 
G(3) = 1.128 403, G(3.5) = 1.128 379, G(4) = 1.128 3784, and  G ( L )  = 1.128 3783 for 
L Z  4.5. This result proves that the stability ‘imposed’ at x = L does not generate any 
instability at the other boundary x = 0. 

This procedure gives similar results when applied to other potentials. We give in 
table 2 another example for the potential V ( x )  = x 2 + x ’ / ( 1  + x 2 ) .  

3. Discussion 

In order to verify the accuracy of the present method we consider the application used 
by Killingbeck (1987) for E = 1, where the exact solution of (1) is given by y ( x )  = 
exp(-x2/2). Here again we make use of the same Numerov integrator used by Killing- 
beck, with the same step-length h = 0.05; and  we normalize the computed solution 
y ( x )  to 1 at x = 0. 

We give in table 3 our  results for L = 10 and  L = 15 (similar results were obtained 
for L> 15), along with those of Killingbeck (1987) (limited at L =  10) on one side, 
and  with the exact values of the other side. For 0 S x S 10, we notice an  agreement 
between our  results and  those of Killingbeck with a slight advantage for our results 
compared with the exact value of y ( x )  (last column). Yet the main advantage of the 
present method is, here too, its high stability. 

In order to determine the source of the discrepancy 6 y ( x )  = i y ‘ (x)  - y ‘ ( x ) /  between 
computed and  exact values, we give in table 4 the values of Gy(x)/y‘(x) for several 
values of h ( h  =0.1, 0.05, 0.025 and 0.01). We notice that the discrepancy decreases 
with h. When we add  to this remark the fact that the choice of L has no effect on the 
computed y ( x )  (see tables 1 and  2), we may deduce that the accuracy of the present 
method is mainly related to  that of the integrator itself; this is most probably the 
unique source of error; when other difference equations are used, as in table 5, the 
results are quite different. 

As we mentioned before, the numerical integration of the Schrodinger equation 
may be used to determine the solution y (x )  for a given E, or to find the eigenvalues 
E,. For this last problem, we cause E to vary, and  we look for the values E,, for which 
y ( 0 )  = 0 (odd eigenvalues) or y ’ (0 )  = 0 (even eigenvalues). In all cases one operation 
is repeated, i.e. the determination of y ( x )  for trial values of E. 

We computed the eigenvalues E,  of the potential V = x’ + Ax2/( 1 + gx’) by following 
the procedure already suggested by Kobeissi et a1 (1989), i.e. by looking for the values 
of E verifying the equations G ( E ) = O  and G ( E ) = c o .  In this application y ( x )  is 
obtained by the present shooting method (with the Numerov integrator), y’(x) is 
calculated just at  x = 0 by using the simple formula given in the work of Blatt (1967) 
by the expression 

with c, = 1 - h 2 ( V ( h )  - E ) / 6  and c2 = 1 - h’( V ( - h )  - E ) / 6 .  
Y Y O )  = ( c ,y (h )  - c,y(-h))/2h 
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Table 3. Computed values of the solution y ( x )  of (1 )  with E = 1 at several values of x. 
The values obtained by the present method for L = 10 and L = 15 are compared with those 
obtained by Killingbeck (1987) and to the exact values. In all cases the Numerov integrator 
is used with a step-length h =0.05. (Numbers between parentheses are exponents.) 

Present work 

L =  10 L =  15 Exact value 

15 
14 
13 
12 
11 
10 0t 
9 2.5793 (-18) 
8 1.2671 (-14) 
7 2.2903 (-11) 
6 1.5232 (-8) 
5 3.7268 (-6) 
4 3.3547 (-4) 
3 1.1109 (-2) 
2 1.3534 ( - 1 )  
1 6.0653 ( -  1) 
0 1 

O$ 
2.574 450 (-18) 
1.265 895 (-14) 
2.289356(-11) 
1.522 915 (-8) 
3.726 606 (-6) 
3.354 622 (-4) 
1.110 900 ( -2)  
1.353 353 (-1) 
6.065 306 ( -  1 ) 
16 

O$ 
2.708 873 (-43) 
1.986 565 (-37) 
5.350 091 (-32) 
5.293 887 (-27) 
1.925 340 (-22) 
2.574450(-18) 
1.265 895 (-14) 
2.289 356 ( -1  1) 
1.522 915 ( -8 )  
3.726 606 (-6) 
3.354 622 ( -4)  
1.1 10 900 (-2) 
1.353 353 (-1) 
6.065 306 ( -  1 ) 
113 

2.748 785 (-43) 
2.005 009 (-37) 
5.380 186 (-32) 
5.311 092 (-27) 
1.928 750 (-22) 
2.576 757 (-18) 
1.266417 (-14) 
2.289 735 ( -  11 ) 
1.522 998 (-8) 
3.726 653 (-6) 
3.354 626 (-4) 
1 . I  10 900 (-2) 
1.353 353 (-1) 
6.065 307 (-1) 
1 

t Rendered formally 0 by choice of weighting factors. 

13 Rendered 1 by normalization. 
Rendered 0 by imposing boundary conditions. 

Table 4. Relative error S y ( x ) / y e ( x )  in the computed value of the solution y ( x )  of (1) with 
E = 1 at several values of x, where S y ( x )  = i y ' ( x )  - y e ( x ) l ,  y c  and y e  are the computed and 
the exact values, respectively. Values are obtained by using the Numerov integrator, and 
given for several values of the step-length h. (Numbers between parentheses are exponents.) 

x j h  0.1 0.05 0.025 0.01 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

1.6 (-1) 
1.4(-2) 
6.5 (-3) 
2.6 (-3) 
8.7 (-4) 
2.0 (-4) 
1.8 (-5) 
3.6 (-6) 
2.1 (-6) 
1.7 (-6) 

1.8 (-3) 
8.9 (-4) 
4.1 ( -4) 
1.7 (-4) 
5.4 (-5) 
1.3 (-5) 
1.1 (-6) 
2.3 (-7) 
1.3 (-7) 
1.0 (-7) 

1.1 (-4) 
5.6 (-5) 
2.6 (-5) 
1.0(-5) 
3.4 (-6) 
7.9 ( -7)  
7.2 ( -8 )  
1.4(-8) 
8.1 ( -9) 
6.5 (-9) 

3.3 (-6) 
1.4 (-6) 
6.6 (-7) 
2.7 (-7) 
8.7 (-8) 
2.0 (-8) 
1.8 (-9) 
3.6 (-10) 
2.1 (-10) 
1.7 (-10) 

By using the same step-length h = 0.05 used by Fack and Vanden Berghe (1987) 
for this same application, we found numerical values of E,, ( n  = 0, 1 , 2 , 3 )  similar to 
those found by Fack and Vanden Berghe (19871, with the same integrator and the 
same step-length (see table 6).  
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Table 5. Relative error S.v(x)/y'ix) in the computed value of the solution y ( x )  of ( 1 )  with 
E = 1 at several values of x, where S y i x )  = ly'(x) - ~ , ~ ( . x ) l ,  yc and ye  are the computed and 
the exact values, respectively. Sy is displayed for the following difference equations: 
Numerov ( l933) ,  Cash and Raptis (1984) and Kobeissi (1982). The value of the step-length 
in each case is displayed in  the last line. (Numbers between parentheses are exponents.) 

Cash and 
X Numerov (1933) Raptis (1984) Kobeissi (1982) 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

1.8 (-3) 
8.9 (-4) 
4.1 (-4) 
1.7 (-4) 
5.4 (-5) 
1.3 (-5) 
1.1 ( -6)  
2.3 (-7) 
1.3 (-7) 
1.0 (-7) 

4.1 ( - 6 )  
1.7 (-6)  
8.3 1-71 
3.6 (-7)  
1.3 ( -7)  
3.7 (-8) 
6.1 (-9) 
2.2 (-10) 
2.3 (-10) 
5.6 (-11) 

4.3 (-8)  
2.1 ( -9) 
1.2 (-10) 
3.3 (-12) 
1.6 (-13) 
1.4(-14) 
1.1 (-15) 
3.1 (-16) 
2.1 (-16) 
1.8 (-16) 

h 0.05 0.05 0.5 

Table 6. Comparison of the eigenvalue EC computed for the potential V = x2 + Ax' / (  1 + gx') 
for three sets of ( A ,  g )  by the present method and by Fack and Vanden Berghe (1987) both 
using the Numerov integrator with the same step-length h = 0.05. For each entry the exact 
eigenvalue E e  is given in first line, P E  = E ' -  E' in absolute value is given in second line 
for the present method and in third line for that of Fack and Vanden Berghe (1987). 

E A = 0, g = 0 A = 0.1, g = 0.1 A = 10, g = 10 

1.043 173 713t 
6 (-8) 
6 (-8) 
3.120081 862 
4 (-7) 
4 (-7) 
5.181 094777 
1 ( - 6 )  
1 ( - 6 )  
7.231 009 954 
3 (-6) 
3 (-6) 

1.580 022 326t 
1 ( - 7 )  
1 ( - 7 )  
3.879 036 829 
4 (-7) 
4 (-7) 
5.832 767 522 

1 ( - 6 )  
7.903 154 133 
3 (-6) 
3 (-6) 

~ ~~ 

+ Highly accurate values by Fack and Vanden Berghe (1985) considered here as exact 
$ Figures between parentheses are exponents. 

4. Conclusion 

It is commonly believed that the numerical solution of the radial Schrodinger equation 
(equation (1) )  with given E and given initial values at an  'origin' xo becomes unstable 
for 'large' x when the Numerov integrator is used. 

We showed in the present work that the values of the solution y ( x )  can be obtained 
for large values of x, by just imposing the desired boundary condition and  by shooting 
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backwards towards the origin. This goal is reached even when the Numerov integrator 
is used. 

We verified that the two procedures give the same accuracy for y ( x )  when the same 
step-length is used, and that the eigenvalues obtained by both methods are practically 
identical. The present method is recommended when values of the solution y ( x )  for 
large x are needed. 

References 

Blatt J M 1967 J.  Compur. Phys. 1 382 
Cash J R and Raptis A D 1984 Compur. Phys. Commun. 33 299 
Fack V and Vanden Berghe G 1985 J.  Phys. A :  Marh. Gen. 18 3355 
- 1986 Compur. Phys. Commun. 39 187 
__ 1987 J. Phys. A :  Marh. Gen. 20 4153 
Gupta R C and Agarwal R P 1985 J. Math. Anal. Appl. 112 210 
Hajj F Y, Kobeissi H and Nassif N 1974 J.  Compur. Phys. 16 150 
Holt J F 1964 Commun. A C M  7 366 
Killingbeck J 1986 Phys. Lerr. 115A 301 
._ 1987 J. Phys. A: Marh. Gen. 20 1411 
Kobeissi H 1982 J.  Phys. B: AI. Mol. Phys. 15 693 
Kobeissi H, Kobeissi M and El-Hajj A 1989 J.  Phys. A :  Math. Gen. 22 287 
Numerov B 1933 Pub!. Obs. Central Asrrophys. Russ. 2 188 
Osborne M R 1969 J. Math. Anal. Appl. 21 417 
Roberts S M and Shipman J S 1971 J.  Opr. Theor. Appl. 7 301 


